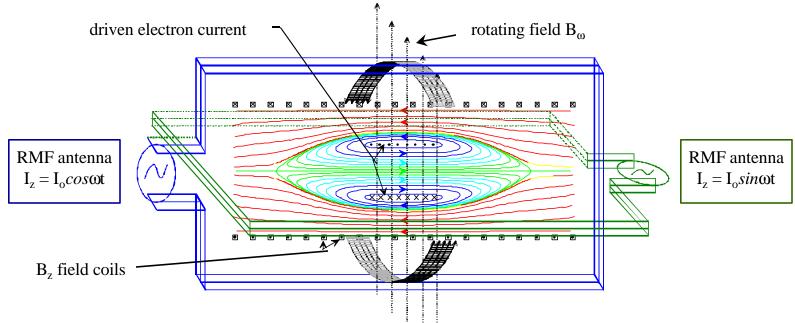


RMF Current Drive in FRCs

Ken Miller

Redmond Plasma Physics Laboratory University of Washington

> (2000 ICC Workshop) (Berkley, Feb. 22-25, 2000)


Outline

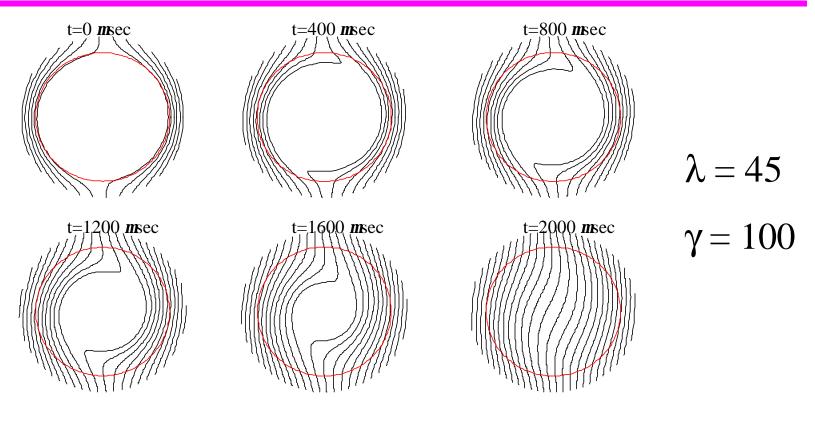
- Introduction basic experimental observations
- RMF Drive Consistent With FRC Equilibrium
- STX Experiments
- What It All Means & Continuing Investigations

PPP

RMF Current Drive

- 'Drag' Electrons Along With Rotating Radial Field
 - Must have $\omega_{ci} < \omega << \omega_{ce}$ for electrons, but not ions, to follow rotation
- Electrons Magnetized on Rotating Field Lines $(\omega_{ce}\tau >> 1)$
 - Necessary for efficient current drive
 - Absolutely necessary for rotating field penetration

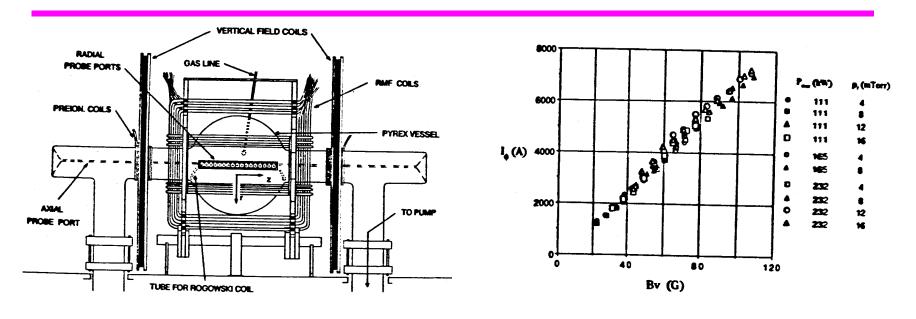
Summary of Basic Physics

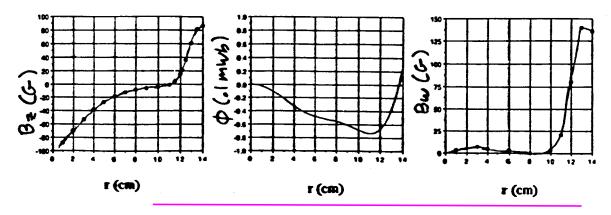

- RMF flux build-up and sustainment is made possible by synchronous electron current drive which allows penetration.
- Penetration is possible when RMF force, $2B_{\omega}^2/\mu_o r$, exceeds resistive drag, $n_e m_e v_\perp \omega r$, which we characterize as

$$\gamma = \frac{\omega_{ce}}{\nu_{ei}} > \lambda = \frac{r}{\delta}$$
 $\omega_{ce} = \frac{eB_{\omega}}{m_e}$ $\delta = \sqrt{\frac{2\eta}{\mu_o \omega}}$

- If $\gamma > \lambda$ then penetration will proceed just far enough to reverse the external confinement field. Current is sustained on the inner field lines by induced inward flow.
- High FRC $\langle \beta \rangle$ and low separatrix density results in narrow edge current layer. There is a delicate balance between having too few and too many electrons.

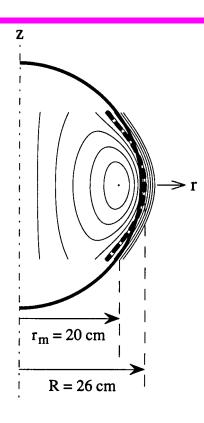
RMF Penetration Calculations for Simple Fixed Column



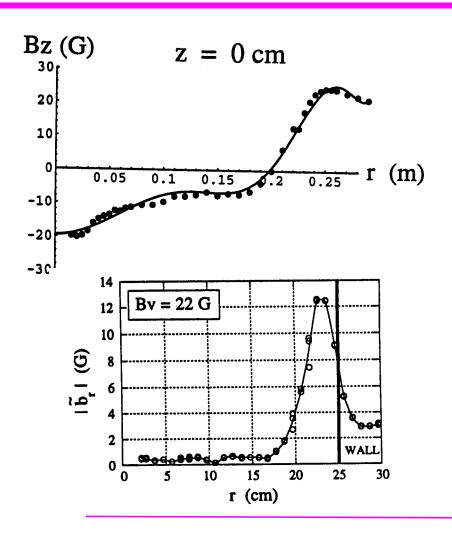

$$r_s = 20 \text{ cm}, \ n_e = 0.25 \times 10^{14} \text{ cm}^{-3}, \ \omega = 10^6 \text{ s}^{-1}, \ B_\omega = 50 \text{ G}$$

$$T_e = 100 \text{ eV}, \ \eta = 10 \ \mu\Omega\text{-m} \ (10 \times \text{classical})$$

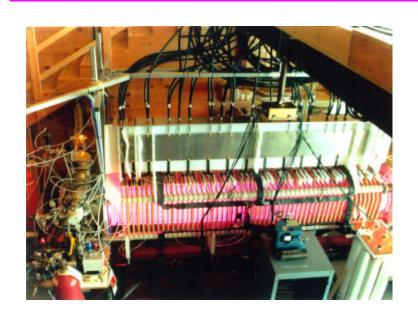
Flinders 10\ell Rotamak

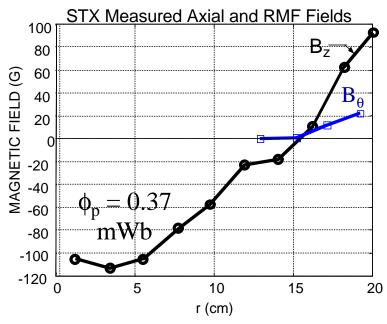


RMF penetration adjusts to provide current necessary to maintain equilibrium

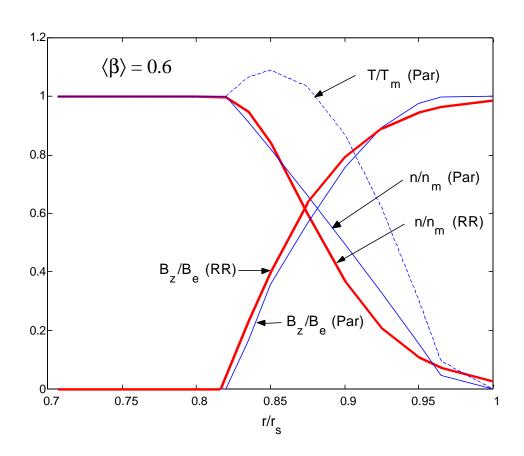


Flinders 50 \(\ell \) Rotamak




RMF flux drive pushes FRC against plasma tube wall

STX RMF Driven FRC


Flux conserver causes external field to increase as FRC expands.

In this experiment separatrix, $r_s \approx 20.7$ cm, is slightly outside plasma tube wall, $r_w = 20$ cm, but density is essentially zero there ($\beta_s \approx 0$).

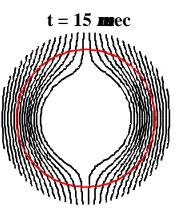
Internal field exceeds external field due to RMF field contribution.

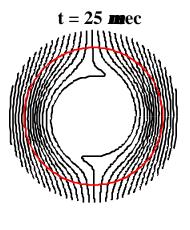
Density and B_z Profiles Consistent With high $\langle \beta \rangle$, low n(r_s), & j = newr

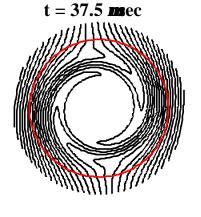
RR:
$$n = n_m sech^2 K \left(\frac{r^2}{r_e^2} - 1\right)$$

 $K = \frac{n_m e \omega r_e^2}{2B_e / \mu_o}$ $T = const$

Par:
$$n = n_m \frac{r_s^2 - r^2}{r_s^2 - r_e^2}$$

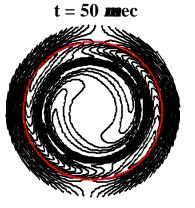

RMF Penetration Calculation Including FRC Quasi 2-D Dynamics

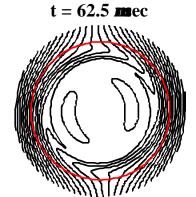


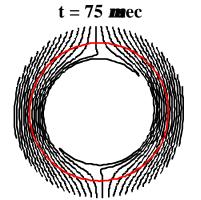


$$\lambda = 35$$

$$\gamma = 155$$

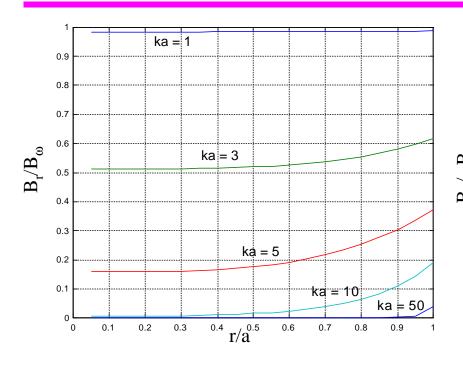


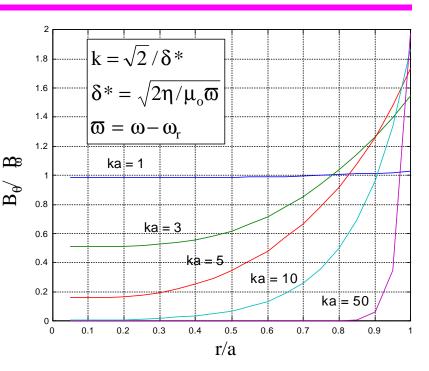



Finally

$$\lambda = 35$$

$$\gamma = 47$$





Analytic Model Can Give Forces

$$E_z = \omega r B_r \approx \begin{cases} e^{-i\left(\frac{\pi}{4} + \frac{a - r}{\delta^*}\right)} \end{cases} \omega \sqrt{\frac{2a}{r}} \delta^* e^{-\frac{a - r}{\delta^*}} \quad j_z = \frac{\varpi}{\omega} \frac{E_z}{\eta} \\ T_M \approx \frac{2\pi B_\omega^2}{\mu_o} a \delta^* \quad (\text{for } \delta^* / a < 0.3) \end{cases}$$

$$F_{\theta} = \left\langle j_{z} B_{r} \right\rangle = \frac{2B_{\omega}^{2}}{\mu_{o} a} \left(\frac{a}{r}\right)^{2} e^{-2\frac{a-r}{\delta^{*}}}$$

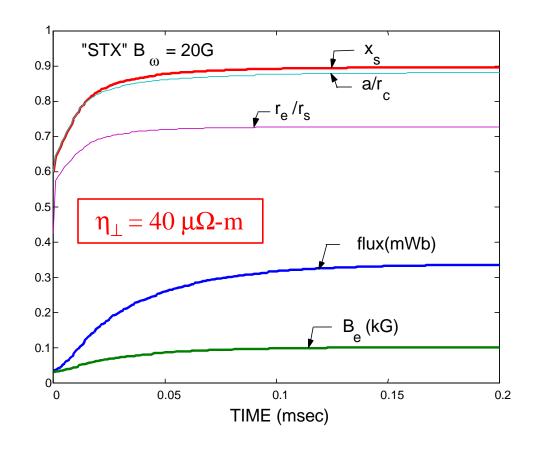
$$T_{M} \approx \frac{2\pi B_{\omega}^{2}}{H} a\delta^{*} \quad \text{(for } \delta^{*}/a < 0.3)$$

RMF Radial Pressure Gradient

- $F_r = -\langle j_z B_\theta \rangle$
- $F_{r} = -\langle j_{z}B_{\theta}\rangle$ Analytic solution for edge current layer: $\begin{cases} j_{z} = \left\{e^{i\left(\frac{\pi}{4} + \frac{a-r}{\delta^{*}}\right)}\right\} \frac{\sqrt{2\varpi}B_{\omega}\delta^{*}}{\eta_{//}}\sqrt{\frac{a}{r}}e^{-\left(\frac{a-r}{\delta^{*}}\right)} \\ B_{\theta} = \left\{e^{i\left(\frac{\pi}{2} + \frac{a-r}{\delta^{*}}\right)}\right\} 2B_{\omega}\sqrt{\frac{a}{r}}e^{-\left(\frac{a-r}{\delta^{*}}\right)} \end{cases}$
- J_z and $B_\theta \pi/4$ out of phase so

$$\langle j_z B_{\theta} \rangle = \frac{1}{2\sqrt{2}} |j_z| |B_{\theta}| = \left(\frac{a}{\delta^*}\right) \frac{2B_{\omega}^2}{\mu_o a} \frac{a}{r} e^{-2\left(\frac{a-r}{\delta^*}\right)}$$

- Resultant radial pressure $p_r = \int_0^a F_r dr = \frac{B_\omega^2}{u}$ is strong.
- This is in addition to $\langle j_z B_r \rangle$ that counters diffusion: $v_r = -\frac{1}{B_z} (\eta_\perp j_\theta + \langle j_z B_r \rangle / ne)$

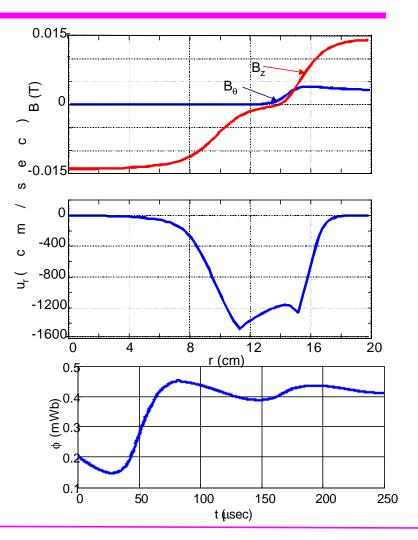

Average Torque Based Calculation of Flux Build-up

Average
$$\langle E_{\theta} \rangle_R \sim \langle F_{\theta M} - F_{\eta M} \rangle / ne$$

 $T_M = T_o (\delta^*/a) \quad T_{\eta} \approx (\lambda^2/2\gamma^2) T_o$
 $T_o = 2\pi a^2 B_{\omega}^2 / \mu_o$
 $d\phi/dt = 2(T_M - T_{\eta}) / nea^2$

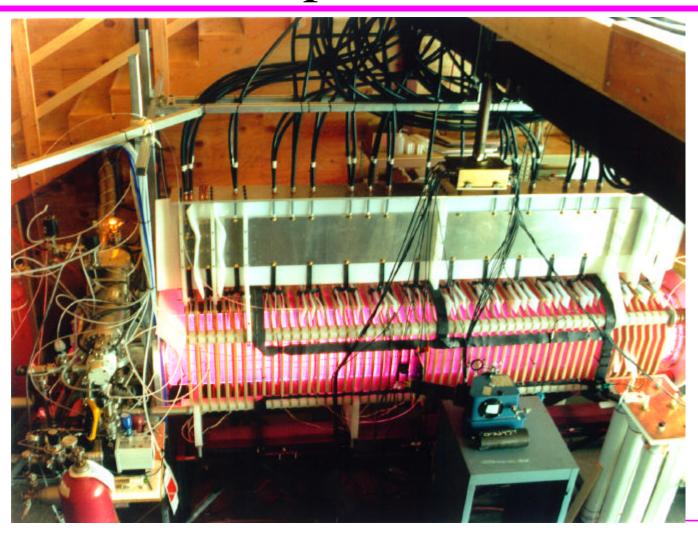
$$\frac{d\phi}{dt} \sim \frac{T_o}{nea^2} = \frac{2\pi B_\omega^2}{ne}$$
= 0.004 \frac{B_\omega(G)}{n(10^{20} \text{ m}^{-3})} \frac{\text{mWb}}{\text{m sec}}

Flux build-up continues until $\lambda \sim \gamma$ (due to field compression and density increase). Results in large x_s .

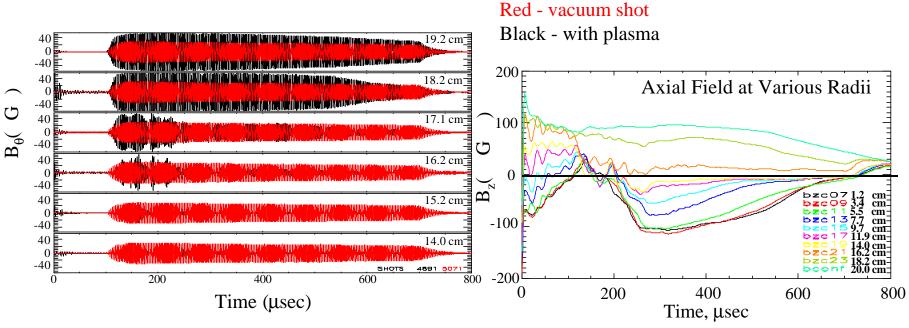


Details of Steady Solution

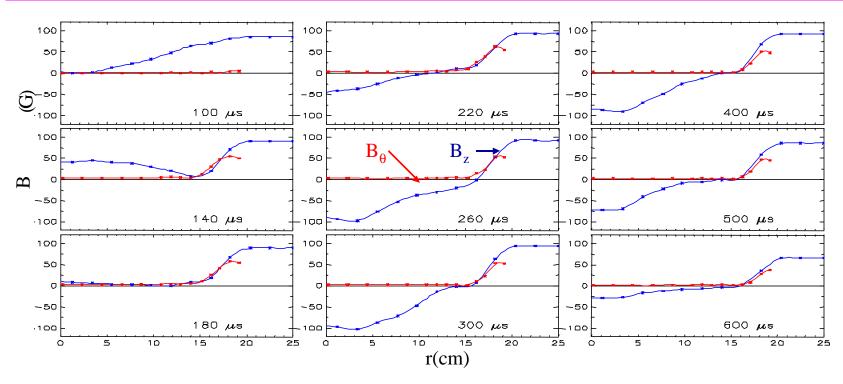
• True steady state requires $E_{\theta} = 0$ everywhere.


$$E_{\theta} = \eta_{\perp} j_{\theta} + v_{er} B_{z} - \langle v_{ez} B_{r} \rangle$$

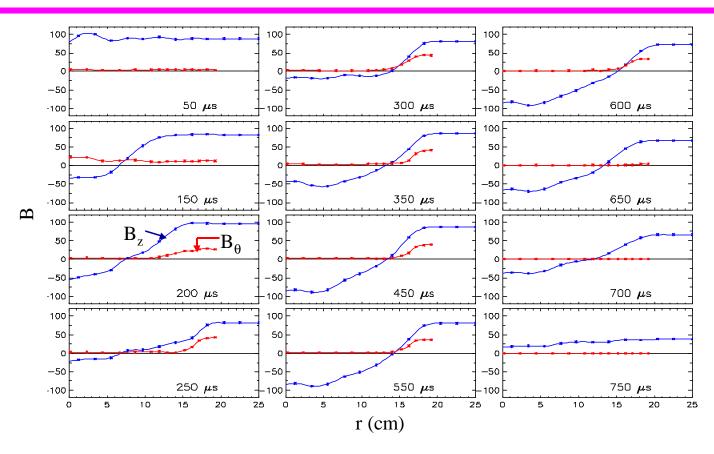
- 'Quasi-2D' numerical solution shows how this can occur due to overall inward flow, with RMF current drive only in outer edge.
- Calculation duplicates measured B_z(r) profile.
- Numerical flux build-up rate \approx simple analytic rate for stipulated $\eta_{\perp} = 40 \ \mu\Omega$ -m.



STX Experiments

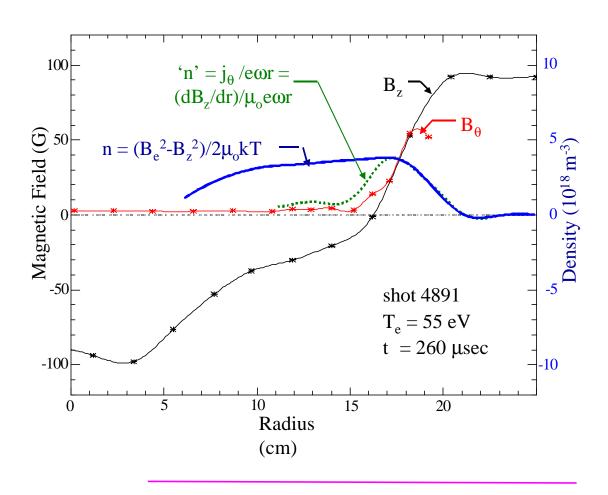

Rapid Flux Build-up From Fully Ionized (decayed FRC) Plasma Column

- Flux builds up to 0.37 mWb in 100 µsec in agreement with calculations.
- Flux then decays slowly: most likely due to overheating and too low a density to produce current reversal in equilibrium edge layer, or to inability to sustain inward v_r throughout column due to 2-D effects.
- Ion spin-up could also reduce maximum synchronous current, but not seen from Doppler broadening measurements


Details of Rapid Flux Build-up Case

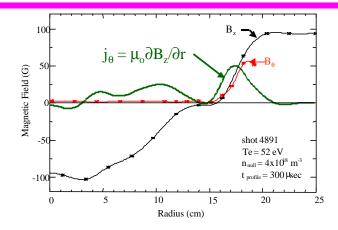
- FRC transitions to high beta column. This is only possible steady solution if total line density is too low to maintain $I_o' = \langle n_e \rangle e \omega a^2/2 > 2B_e/\mu_o$
- $\langle n_e \rangle = 2.5 \times 10^{18}$, $\omega = 2.2 \times 10^6$, a = 0.2, $B_e = 0.009$: $I_0' = 18 \text{ kA/m}$, $2B_e / \mu_0 = 14 \text{ kA/m}$

Flux Build-up Starting From Low Beta Column



- Steady state achievable under different operating conditions.
- Flux decay rate after RMF turnoff $\Rightarrow \eta_{\perp} \sim 40 \mu\Omega$ -m.

Electron rotation appears synchronous in driven edge

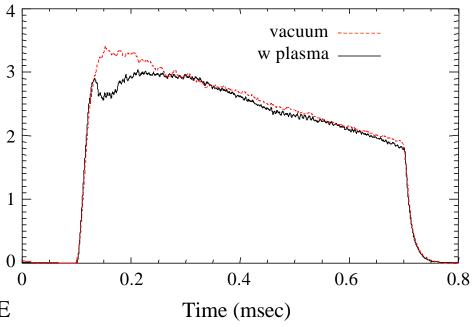


- 'n' calculated from synchronous electron rotation agrees with n inferred from pressure balance assuming fixed 'best fit' temperature over region of RMF penetration.
- Very low density at r = 0 and separatrix $(r_s \sim 20 \text{ cm})$.
- RMF field contributes to confinement with $B_e(0) > B_e(r_s)$

Estimate of STX Resistivity

- Numerical calculations match measured flux build-up using $\eta_{\perp} = 40 \ \mu\Omega$ -m.
- Flux lifetime without RMF drive $\tau_{\phi} = r_s^2/16(\eta_{\perp}\mu_o) \sim 80 \ \mu s \Rightarrow \eta_{\perp} = 40 \ \mu\Omega$ -m.
- Implied absorbed Ohmic power = $\eta_{\perp} \int j^2 dV \sim 3.5 \, \eta_{\perp}(\mu \Omega m) \, kW \Rightarrow 140 \, kW$.
- $E_p = 1.5 \text{NkT}_e = 8 \text{ J would yield } \tau_E = 57 \text{ } \mu\text{s}.$
- STX RMF power supply is 1.5 kJ and decays ~500J in 0.5 ms; ~ 1000kW with and without plasma. Best estimate is extra plasma absorbed power ~60kW. This implies lower η_{\perp} where current flows. Better measurements of absorbed Ohmic power are critical.

Maximum Energy Input to FRC Determined by Energy Loss from RMF Supply



Energy loss from RMF Capacitor Bank:

Vacuum Discharge
$$\rightarrow$$
 1,470 J $\langle E_C \rangle$
Plasma Discharge \rightarrow 1,520 J $\langle E_C \rangle$ $\langle J \rangle$

To eliminate energy spent on initial ionization and radiation losses:

Vacuum ΔE - Discharge to equilibrium ΔE - 20 J

 \Rightarrow Max energy into FRC from 0.2 to 0.7 ms = 30 J

$$P_{\text{max}} \le 60 \text{ kW} \pm 10 \text{ kW}$$

FRC Particle Confinement with RMF

Avg. Power lost from RMF antenna: $P_{RMF} \approx 40 \text{ kW}$

Ohmic power from FRC j_0 , j_z

(classical
$$\eta_{\perp}$$
 at kT_e = 33 eV)

$$P_{\Omega} = 40 \text{ kW}$$

Power lost through ion equilibration:

$$P_{ei} = 2.5 \times 10^{-33} \text{ N} \cdot \text{n/T}_{e}^{1/2} = 6 \text{ kW}$$

Power lost due to impurity radiation:

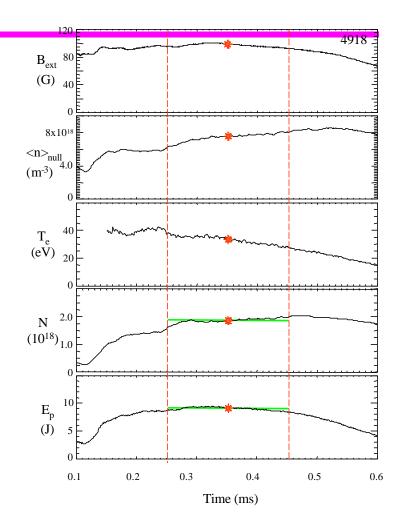
$$P_{rad} = 10^{-31} n_{imp} \cdot n_e \cdot Vol = 14 kW$$

Assume the remaining power loss is convective:

$$\Rightarrow P_N = E_N dN/dt = 20 kW$$

During equilibrium phase (dashed lines):

$$dN/dt = dE_p/dt = 0$$


(Loss per e⁻) {Loss to ionize and heat}

$$E_N = 5/2 kT_e + \{5/2 kT_e + E_{ionize}\} = 3x10^{-17} J$$

$$\Rightarrow$$

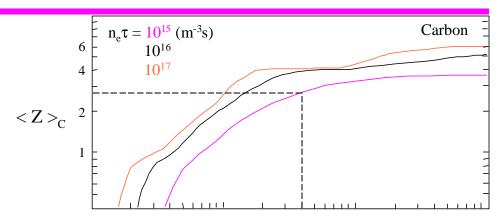
$$\Rightarrow$$
 $\tau_{\rm N} \approx 2.7 \text{ ms}$

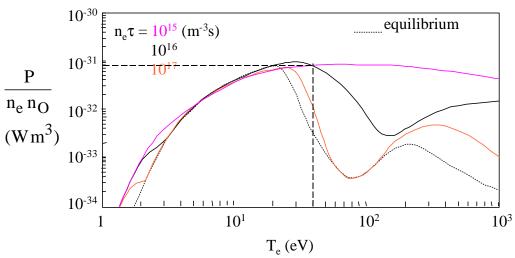
Prior Maximum τ_N (LSX) ~ 1 ms

Impurity Line Radiation Power Loss (C and O)

For
$$15 \text{ eV} < kT_e < 50 \text{ eV}$$

and $0 < t < 1 \text{ ms}$


$$P_{rad} = 10^{-31} n_e n_{imp} \cdot Vol_{FRC}$$


From CO₂ doping experiments:

$$C \cong 0.5\%$$
, $O \cong 0.5\%$

$$N = < n_e > \cdot Vol_{FRC} = 1.8x10^{18}$$

 $n_{imp} = 0.01 < n_e > = 8x10^{16} \text{ m}^{-3}$

$$P_{rad} \ge 14 \text{ kW}$$

Low η_{\perp} Required For Reactor Efficiency with $B_{\omega} < 100G$

- Empirical flux lifetime scaling: $\tau_{\phi} = r_s^2/16D_{\perp} = 40x_s^{1/2}r_s^2(10\text{cm})n_m(10^{20}\text{ m}^{-3})$.

High Density Resistivity Scaling:
$$D_{\perp} = \frac{\eta_{\perp}}{\mu_o} = \frac{5}{\sqrt{x_s n \left(10^{21} \text{m}^{-3}\right)}} \text{ m}^2/\text{s}$$

$$\frac{\gamma}{\lambda} = \sqrt{\left(\frac{F_{\theta}}{nm_{e}\omega r_{s}\nu_{\perp}}\right)_{r_{s}}} = \frac{\sqrt{2}B_{\omega}}{\mu_{o}ner_{s}(D_{\perp}\omega)^{1/2}} = \frac{0.007B_{\omega}(G)}{n(10^{20})\omega^{1/2}(10^{6})D_{\perp}^{1/2}r_{s}}$$

Need
$$0.2 \text{ne} \omega r_s^2 \approx B_e/\mu_o \Rightarrow \frac{\gamma}{\lambda} \approx \frac{0.013 B_\omega(G)}{\sqrt{n(10^{20})D_\perp(m^2/s)B_e(T)}}$$

Better Resistivity Scaling Measured in Recent Low Density Experiments

LSX Scaling :
$$D_{\perp} = \frac{\eta_{\perp}}{\mu_o} = \frac{15}{\sqrt{x_s n (10^{20} m^{-3})}} m^2/s$$

Device	r _c	r _s	B _e	.j p	T _t	n _m	D _^ (m ² /s)	
	(cm)	(cm)	(kG)	(mWb)	(eV)	(10^{20})	scaled	meas
LSX	45	14	8	4.5	1500	10	9	9
LSX	45	22	4	9.5	300	13	6	6
TCS	45	23	1.4	3.7	200	2.5	14	22*
TCS	45	18	1.4	1.8	350	1.4	20	10
FIX	40	16	0.4	0.4	100	0.4	38	11
STX	23	20	0.1	0.35	50	0.05	75	'30'

- Except for the higher density TCS* case, which is obviously influenced by impurities, the measured resistivity at low densities is at least a factor of two better than the LSX based (high density) empirical scaling.
- ◆ Considerable improvement is still needed for RMF to be efficient at 10²⁰ m⁻³ densities.

Development Path

$$\frac{\gamma}{\lambda} = \frac{0.007 \, B_{\omega}(G)}{n(10^{20}) \omega^{1/2} (MHz) r_s(m) \sqrt{D_{\perp}(m^2/s)}}$$

Parameter	STX	STX/ug	TCS	POP	Reactor
R_c (m)	0.25	0.25	0.45	0.50	2.50
B _e (T)	0.01	0.03	0.10	0.3	1.25
$n_e (10^{20} \text{ m}^{-3})$	0.05	0.15	0.50	1.0	2.0
T _e (keV)	0.05^	0.15^	0.25*	1.0*	10*
ω (10 ⁶ s ⁻¹)	2	2	1	0.5	0.1
$B_e/\mu_o\omega n_e e(r_s^2/4)$	0.5	0.5	0.25	0.6	0.3
B _ω (G)	25	75	50-75	50	100
γ/λ	$12/\sqrt{\mathrm{D}_{\perp}}$	$12/\sqrt{\mathrm{D_\perp}}$	$2-3/\sqrt{D_{\perp}}$	$1.2/\sqrt{\mathrm{D_{\perp}}}$	$0.6/\sqrt{\mathrm{D_{\perp}}}$
φ (Wb)	0.35x10 ⁻³	1.0x10 ⁻³	0.01	0.04	4
S	2	5.5	2.3	4.0	20

$$*T_i = T_e$$
 $^T_i \approx 1eV$

- STX/upgrade will test ability to reach higher T_e as RMF power increases.
- TCS will test ability to achieve smaller η_{\perp} with hot ions as size increases.
- POP device would investigate major physics questions in a TCS sized device.

Ion Spin-up

- Either neutral ion friction, v_{in} or, equivalently, fueling, $v_f = s/n$ is required to reach a steady-state ion velocity $v_{i\theta} = v_{e\theta}/(1 + m_i v_f/m_e v_\perp)$
- $v_{\perp} = 3.5 \times 10^6 \, D_{\perp} (m^2/s)$, so would require fueling rate of $10^3 \, \text{sec}^{-1}$ if $D_{\perp} = 1 \, m^2/s$ to prevent ions from spinning up to 1/2 electron speed. This is clearly impractical for a reactor.

Two Solutions:

- Central fueling at field null will provide outward v_r which can greatly reduce RMF power requirements, and thus RMF torque on electrons.
- Neutral beams can be injected opposite RMF direction providing large source of oppositely directed angular momentum (since $v_{i\theta} \ll v_{ti}$).

Summary & Conclusions

- RMF current drive has been demonstrated to work for standard FRC with $B_{\omega} << B_{z}$. Well modeled by numerical calculations with synchronous electron rotation.
- RMF drive necessarily produces edge current which may be stabilizing influence.
- RMF frequency must be carefully chosen to match FRC parameters.
- Key parameter is effective resistivity which will determine required RMF strength and power. Central fueling could greatly reduce RMF power requirement and mitigate ion spin-up problem.
- Critical experiments will be carried out in the next few years using the STX and TCS facilities.